ML之LightGBM:基于titanic数据集利用LightGBM和shap算法实现数据特征的可解释性(量化特征对模型贡献度得分)
相关推荐
-
【机器学习】NeuralProphet,这个时序工具包也太强了吧...
作者:杰少 NeuralProphet 简介 几乎绝大多数做时间序列的朋友都了解Facebook的Prophet模型,因为其在准确性.可解释性等方面有着良好的性能,而且可以为用户自动化许多元素(如超参 ...
-
plt参数二
我还是曾经那个少年, 没有一丝丝改变, 天马行空的想象, 没有一丁点儿实现...... 本篇还介绍plt的参数,接上篇plt设置. 3.坐标轴标题 可以用plt.xlabel()或者plt.ylabe ...
-
XGB模型可解释性SHAP包实战
可解释机器学习在这几年慢慢成为了机器学习的重要研究方向.作为数据科学家需要防止模型存在偏见,且帮助决策者理解如何正确地使用我们的模型.越是严苛的场景,越需要模型提供证明它们是如何运作且避免错误的证据 ...
-
折线图
折线图
-
python模块
模块在python里面是很实用的东西,类似于其他语言里的包或头文件. 一个模块其实就是一个保存了python代码的文件. 1.导入模块 用关键字import导入模块. 如,要使用数学函数,可以导入ma ...
-
应用SHAP可解释框架对多种分类问题模型进行解释
模型可解释性成为机器学习流水线的一个基本部分.将机器学习模型作为"黑盒子"不再是一种选择.幸运的是,像lime.ExplainerDashboard.Shapash.Dalex等分 ...
-
用TSNE进行数据降维并展示聚类结果
TSNE提供了一种有效的数据降维方式,让我们可以在2维或3维的空间中展示聚类结果. #-*- coding: utf-8 -*-from __future__ import unicode_liter ...
-
plot参数
上篇介绍了如何用plot函数来画折线图,以及如何将多个图画在同一个图片上,本篇介绍的是plot函数一些参数的设置. 1.linewidth和linestyle参数 上篇用了color来修改折线的颜色, ...
-
【机器学习】总结了九种机器学习集成分类算法(原理 代码)
大家好,我是云朵君! 导读: 本文是分类分析(基于Python实现五大常用分类算法(原理+代码))第二部分,继续沿用第一部分的数据.会总结性介绍集成分类算法原理及应用,模型调参数将不在本次讨论范围内. ...
-
ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能)
ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能) 输出结果 设计思路 1.使用均匀分布函数随机三个簇,每个簇周围10个数据样本. 2.绘制30个数据样 ...
-
ML之LiR&Lasso:基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化)
ML之LiR&Lasso:基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化) 相关文章 ML之LiR&Lasso:基于dataset ...
-
ML之LassoR&RidgeR:基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测
ML之LassoR&RidgeR:基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测 相关文章 ML之LassoR&RidgeR ...
-
ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)
ML:基于自定义数据集利用Logistic.梯度下降算法GD.LoR逻辑回归.Perceptron感知器.支持向量机(SVM_Linear.SVM_Rbf).LDA线性判别分析算法进行二分类预测(决策 ...
-
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测daiding
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 设计思路 更新-- 输出结果 <class 'pandas ...
-
ML之FE:基于BigMartSales数据集利用Featuretools工具实现自动特征工程之详细攻略daiding
ML之FE:基于BigMartSales数据集利用Featuretools工具实现自动特征工程之详细攻略daiding 基于BigMartSales数据集利用Featuretools工具实现自动特征工 ...
-
ML之FE:基于BigMartSales数据集利用Featuretools工具(1个dataframe表结构切为2个Entity表结构)实现自动特征工程之详细攻略
ML之FE:基于BigMartSales数据集利用Featuretools工具(1个dataframe表结构切为2个Entity表结构)实现自动特征工程之详细攻略 相关文章 ML之FE:基于BigMa ...
-
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码 基于自定义数据集利用深度神经网络(输入层(10个uni ...
-
ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)
ML之回归预测:利用十类机器学习算法(线性回归.kNN.SVM.决策树.随机森林.极端随机树.SGD.提升树.LightGBM.XGBoost)对波士顿数据集[13+1,506]回归预测(模型评估.推 ...
