【机器学习】总结了九种机器学习集成分类算法(原理 代码)
相关推荐
-
ML之xgboost:利用xgboost算法(特征筛选和GridSearchCV)对数据集实现回归预测
ML之xgboost:利用xgboost算法(特征筛选和GridSearchCV)对数据集实现回归预测 输出结果 ['EnterCOD', 'EnterBOD', 'EnterAD', 'EnterZ ...
-
DL之RBM:(sklearn自带数据集为1797个样本*64个特征+5倍数据集)深度学习之BRBM模型学习+LR进行分类实现手写数字图识别
DL之RBM:(sklearn自带数据集为1797个样本*64个特征+5倍数据集)深度学习之BRBM模型学习+LR进行分类实现手写数字图识别 输出结果 实现代码 from __future__ imp ...
-
ML之xgboost:利用xgboost算法(sklearn+7CrVa)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
ML之xgboost:利用xgboost算法(sklearn+7CrVa)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 输出结果 设计思路 核心代码 ...
-
ML之xgboost:利用xgboost算法(sklearn+3Split)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
ML之xgboost:利用xgboost算法(sklearn+3Split)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 输出结果 设计思路 核心代码 ...
-
Py之lightgbm:lightgbm的简介、安装、使用方法之详细攻略
Py之lightgbm:lightgbm的简介.安装.使用方法之详细攻略 lightgbm的简介 LightGBM 是一个梯度 boosting 框架, 使用基于学习算法的决策树. 它是分布式的, 高 ...
-
ML之xgboost:利用xgboost算法(结合sklearn)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
ML之xgboost:利用xgboost算法(结合sklearn)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 输出结果 设计思路 核心代码 bst ...
-
使用sklearn做自然语言处理-1
今天我们以20newsgroups数据集为例,借助sklearn库来进行话题分类(文本分类).在本篇教程中涉及到: 读取数据 数据预处理 特征抽取 模型评估 1. 读取数据 为了便于分析,已将数据集保 ...
-
Python 中解释 XGBoost 模型的学习曲线
XGBoost是梯度提升集成算法的强大而有效的实现.配置XGBoost模型的超参数可能具有挑战性,这通常会导致使用既费时又计算量大的大型网格搜索实验.配置XGBoost模型的另一种方法是在训练过程中算 ...
-
ML之xgboost:利用xgboost算法(sklearn+3Split+调参曲线)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
ML之xgboost:利用xgboost算法(sklearn+3Split+调参曲线)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 输出结果 设计思路 ...
-
XGBoost、LightGBM与CatBoost算法对比与调参
机器学习 Author:louwill Machine Learning Lab 虽然现在深度学习大行其道,但以XGBoost.LightGBM和CatBoost为代表的Boosting算法仍有其广阔 ...
