ML之LassoR&RidgeR:基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测
相关推荐
-
运行caffe自带的mnist实例教程
本文结合几篇博文总结下来的,附上其中一篇原博文链接以供参考:http://blog.sina.com.cn/s/blog_168effc7e0102xjr1.html 1.先进入caffe文件目录,( ...
-
广告ctr预估场景下的dnn调优实战
特征 DNN需要组合特征 LR模型的时候,我们需要构造许多组合特征,比如UserID与ItemID的组合,许多做DNN的都宣称简化了特征工程,由隐层学习特征交叉,但是隐层进行特征组合的方式并没有明确的 ...
-
R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析
原文链接:http://tecdat.cn/?p=21602 正则化(regularization) 正则化路径是在正则化参数lambda的值网格上计算套索LASSO或弹性网路惩罚的正则化路径.该算法 ...
-
ML之LiR&Lasso:基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化)
ML之LiR&Lasso:基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化) 相关文章 ML之LiR&Lasso:基于dataset ...
-
ML之Xgboost:利用Xgboost模型(7f-CrVa+网格搜索调参)对数据集(比马印第安人糖尿病)进行二分类预测
ML之Xgboost:利用Xgboost模型(7f-CrVa+网格搜索调参)对数据集(比马印第安人糖尿病)进行二分类预测 输出结果 设计思路 核心代码 grid_search = GridSearch ...
-
ML之LightGBM:基于titanic数据集利用LightGBM和shap算法实现数据特征的可解释性(量化特征对模型贡献度得分)
ML之LightGBM:基于titanic数据集利用LightGBM和shap算法实现数据特征的可解释性(量化特征对模型贡献度得分) 相关文章 ML之LightGBM:基于titanic数据集利用Li ...
-
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测daiding
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 设计思路 更新-- 输出结果 <class 'pandas ...
-
ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测
ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测 输出结果 数据集展示 输出结果 1.k-NN k-NN:Accuracy of K ...
-
ML之H-Clusters:基于H-Clusters算法利用电影数据集实现对top 100电影进行文档分类
ML之H-Clusters:基于H-Clusters算法利用电影数据集实现对top 100电影进行文档分类 输出结果 先看输出结果 实现代码 # -*- coding: utf-8 -*- impor ...
-
ML之RF:基于RF算法实现案例(数据集samtrain.csv、samval.csv、samtest.csv)
ML之RF:基于RF算法实现案例(数据集samtrain.csv.samval.csv.samtest.csv) 输出结果 核心代码 #我们对训练集采用随机森林模型,并评估模型效果 %pylab in ...
-
ML之SVM:基于SVM(sklearn+subplot)的鸢尾花iris数据集的前两个特征(线性不可分的两个样本),判定鸢尾花是哪一种类型
ML之SVM:基于SVM(sklearn+subplot)的鸢尾花iris数据集的前两个特征(线性不可分的两个样本),判定鸢尾花是哪一种类型 输出结果 (1).黄色的点为支持向量 实现代码 #ML之S ...
-
ML之LoR:基于LoR算法实现对非线性数据集点进行绘制决策边界
ML之LoR:基于LoR算法实现对非线性数据集点进行绘制决策边界 基于LoR算法实现对非线性数据集点进行绘制决策边界 1.查看数据集 import numpy as np from sklearn.d ...
