ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)
相关推荐
-
R机器学习:分类算法之判别分析LDA,QDA的原理与实现
判别分析的框框很大,今天给大家写写线性判别和二次判别,这两个是判别分析中最常见也是最基本的,希望能够给大家写明白. 首先给出判别分析的定义: Linear discriminant analysis ...
-
运动想象系统中的特征提取算法和分类算法
更多技术,第一时间送达 特征提取算法 (1)时域方法:这是比较早期的EEG信号处理方法,主要通过提取EEG的波形特征,比如振幅.方差.波峰等,对EEG信号进行分析: (2)频域方法:运动想象EEG信号 ...
-
LDA线性判别分析
线性判别分析,全称是Linear Discriminant Analysis, 简称LDA, 是一种属于监督学习的降维算法.与PCA这种无监督的降维算法不同,LDA要求输入数据有对应的标签. LDA降 ...
-
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码 基于自定义数据集利用深度神经网络(输入层(10个uni ...
-
ML之FE:基于自定义数据集(银行客户信息贷款和赔偿)对比实现特征衍生(手动设计新特征、利用featuretools工具实现自动特征生成)
ML之FE:基于自定义数据集(银行客户信息贷款和赔偿)对比实现特征衍生(手动设计新特征.利用featuretools工具实现自动特征生成)相关文章ML之FE:基于自定义数据集(银行客户信息贷款和赔偿) ...
-
ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测
ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测 输出结果 数据集展示 输出结果 1.k-NN k-NN:Accuracy of K ...
-
ML之LoR&SGD:基于LoR(逻辑回归)、SGD梯度下降算法对乳腺癌肿瘤(10+1)进行二分类预测(良/恶性)
ML之LoR&SGD:基于LoR(逻辑回归).SGD梯度下降算法对乳腺癌肿瘤(10+1)进行二分类预测(良/恶性) 输出结果 breast-cancer size (683, 11) 训练集情 ...
-
ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能)
ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能) 输出结果 设计思路 1.使用均匀分布函数随机三个簇,每个簇周围10个数据样本. 2.绘制30个数据样 ...
-
DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)
DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化) 相关文章 DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数 ...
-
ML之LightGBM:基于titanic数据集利用LightGBM和shap算法实现数据特征的可解释性(量化特征对模型贡献度得分)
ML之LightGBM:基于titanic数据集利用LightGBM和shap算法实现数据特征的可解释性(量化特征对模型贡献度得分) 相关文章 ML之LightGBM:基于titanic数据集利用Li ...
-
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测daiding
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 设计思路 更新-- 输出结果 <class 'pandas ...
-
ML之NB:基于news新闻文本数据集利用纯统计法、kNN、朴素贝叶斯(高斯/多元伯努利/多项式)、线性判别分析LDA、感知器等算法实现文本分类预测
ML之NB:基于news新闻文本数据集利用纯统计法.kNN.朴素贝叶斯(高斯/多元伯努利/多项式).线性判别分析LDA.感知器等算法实现文本分类预测 相关文章 ML之NB:基于news新闻文本数据集利 ...
