比用 Pytorch 框架快 200 倍!0.76 秒后,笔记本上的 CNN 就搞定了 MNIST
相关推荐
-
TF之GD:基于tensorflow框架搭建GD算法利用Fashion-MNIST数据集实现多分类预测(92%)
TF之GD:基于tensorflow框架搭建GD算法利用Fashion-MNIST数据集实现多分类预测(92%) 输出结果 Successfully downloaded train-images-i ...
-
深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化
如果需要小编其他论文翻译,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 上一篇博客先搭建 ...
-
tensorflow 学习笔记-- 深度学习中epochs batchsize iteration的概念
深度学习框架中涉及很多参数,如果一些基本的参数如果不了解,那么你去看任何一个深度学习框架是都会觉得很困难,下面介绍几个新手常问的几个参数. batch 深度学习的优化算法,说白了就是梯度下降.每次的参 ...
-
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程 相关文章: DL之DNN优化技术:采用三种激活函数(si ...
-
PyTorch Lightning工具学习
来源 | GiantPandaCV 编辑 | pprp [导读]Pytorch Lightning是在Pytorch基础上进行封装的库(可以理解为keras之于tensorflow),为了让用户能够脱 ...
-
PyTorch之LeNet-5:利用PyTorch实现最经典的LeNet-5卷积神经网络对手写数字图片识别CNN
PyTorch之LeNet-5:利用PyTorch实现最经典的LeNet-5卷积神经网络对手写数字图片识别CNN 训练过程 代码设计 #PyTorch:利用PyTorch实现最经典的LeNet卷积神经 ...
-
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD】对Mnist数据集训练来理解过拟合现象
DL之DNN:利用MultiLayerNet模型[6*100+ReLU+SGD]对Mnist数据集训练来理解过拟合现象 导读 自定义少量的Mnist数据集,利用全连接神经网络MultiLayerNet ...
-
mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型
Mxnet框架深度学习框架越来越受到大家的欢迎.但是如何正确的使用这一框架,很多人并不是很清楚.从训练数据的预处理,数据的生成(网络真正需要的数据格式,网络模型的保存,网络训练日志的保存,等等,虽然网 ...
-
(4条消息) 深度学习中的epochs,batch
深度学习框架中涉及很多参数,如果一些基本的参数如果不了解,那么你去看任何一个深度学习框架是都会觉得很困难,下面介绍几个新手常问的几个参数. batch 深度学习的优化算法,说白了就是梯度下降.每次的参 ...
-
零基础入门语义分割-Task5 模型训练与验证
一个成熟合格的深度学习训练流程至少具备以下功能: 在训练集上进行训练,并在验证集上进行验证: 模型可以保存最优的权重,并读取权重: 记录下训练集和验证集的精度,便于调参. 5 模型训练与验证 为此本章 ...
-
TensorFlow深度自动编码器入门实践
包含从头开始构建Autoencoders模型的完整代码. (关注"我爱计算机视觉"公众号,一个有价值有深度的公众号~) 在本教程中,我们一起来探索一个非监督学习神经网络--Auto ...
-
实操教程 | GPU多卡并行训练总结(以pytorch为例)
极市导读 本文的论述分为"为什么要使用多GPU并行训练"."常见的多GPU训练方法"."误差梯度如何在不同设备之间通信"."BN如 ...
-
深度学习在图像分类中的应用ーー利用 Pytorch 从零开始创建 CNN
重磅干货,第一时间送达 推荐阅读 31个Python实战项目教你掌握图像处理,PDF开放下载 opencv_contrib扩展模块中文教程pdf,限时领取 引言 本文将解释一个卷积神经网络(CNN)的 ...
