NLP之WE之Skip-Gram:基于TF利用Skip-Gram模型实现词嵌入并进行可视化、过程全记录

(0)

相关推荐

  • 无监督中文分词算法近年研究进展

    设为 "星标",重磅干货,第一时间送达! 转载自 | PaperWeekly ©PaperWeekly 原创 · 作者|韩蕊莘 学校|北京大学硕士生 研究方向|问答系统 SLM 论 ...

  • 机器学习竞赛必备基础知识_Word2Vec

    机器学习竞赛必备基础知识_Word2Vec

  • 论文|万物皆可Vector之Word2vec:2个模型、2个优化及实战使用

    本主题文章将会分为三部分介绍,每部分的主题为: word2vec的前奏-统计语言模型(点击阅读) word2vec详解-风华不减 其他xxx2vec论文和应用介绍 后续会更新Embedding相关的文 ...

  • word2vec中的数学模型

    word2vec中的数学模型

  • 【NLP实战】tensorflow词向量训练实战

    实战是学习一门技术最好的方式,也是深入了解一门技术唯一的方式.因此,NLP专栏计划推出一个实战专栏,让有兴趣的同学在看文章之余也可以自己动手试一试. 本篇介绍自然语言处理中最基础的词向量的训练. 作者 ...

  • 手把手教你解决90%的NLP问题

    作者:Emmanuel Ameisen 编译:ronghuaiyang 导读 利用机器学习方法来理解和利用文本,从最简单的到state-of-the-art,由浅入深,循序渐进. 文本数据到处都是 无 ...

  • YYDS!一个针对中文的预训练模型

    深度学习自然语言处理 一个热衷于深度学习与NLP前沿技术的平台,期待在知识的殿堂与你相遇~ 156篇原创内容 公众号 作者 | 周俊贤 整理 | NewBeeNLP 相信做中文NLP的同学和朋友们,对 ...

  • 【NLP-词向量】从模型结构到损失函数详解word2vec

    上周我们讲到,在进行NNLM训练时,能够得到副产品,词向量.本文介绍一种专门用于词向量制备的方法:word2vec,利用它能够高效的训练出词向量. 作者&编辑 | 小Dream哥 1 word ...

  • 特征工程|四种主流的embedding特征技术

    特征工程系列文章目前已经更新: 特征工程|数据的分类.特征工程的定义.意义和应用 特征工程|特征设计.特征可用性评估 特征工程|特征获取.特征规范和特征存储 特征工程|数据清洗.特征生成.特征拼接 特 ...

  • 不懂word2vec,还敢说自己是做NLP?

    选择"星标"公众号 重磅干货,第一时间送达! 前  言 如今,深度学习炙手可热,deep learning在图像处理领域已经取得了长足的进展.随着Google发布word2vec, ...

  • 深入理解 word2vec 原理

    Author:louwill From:深度学习笔记 语言模型是自然语言处理的核心概念之一.word2vec是一种基于神经网络的语言模型,也是一种词汇表征方法.word2vec包括两种结构:skip- ...