解决overfitting的方法
相关推荐
-
Tensorflow:tf.contrib.rnn.DropoutWrapper函数(谷歌已经为Dropout申请了专利!)、MultiRNNCell函数的解读与理解
Tensorflow:tf.contrib.rnn.DropoutWrapper函数(谷歌已经为Dropout申请了专利!).MultiRNNCell函数的解读与理解tensorflow官网API文档 ...
-
keras搭建多层LSTM时间序列预测模型
参考基于 Keras 的 LSTM 时间序列分析--以苹果股价预测为例 ######################导入库##########################import osos.e ...
-
DL之DNN优化技术:利用Dropout(简介、使用、应用)优化方法提高DNN模型的性能
DL之DNN优化技术:利用Dropout(简介.入门.使用)优化方法提高DNN模型的性能 Dropout简介 随机失活(dropout)是对具有深度结构的人工神经网络进行优化的方法,在学习过程中通过将 ...
-
DL之NN:NN算法(本地数据集50000张训练集图片)进阶优化之三种参数改进,进一步提高手写数字图片识别的准确率
DL之NN:NN算法(本地数据集50000张训练集图片)进阶优化之三种参数改进,进一步提高手写数字图片识别的准确率 导读 上一篇文章,比较了三种算法实现对手写数字识别,其中,SVM和神经网络算法表现非 ...
-
基于OpencvCV的情绪检测
重磅干货,第一时间送达 情绪检测或表情分类在深度学习领域中有着广泛的研究.使用相机和一些简单的代码我们就可以对情绪进行实时分类,这也是迈向高级人机交互的一步. 前言 本期我们将首先介绍如何使用Kera ...
-
DL框架之MXNet :神经网络算法简介之MXNet 常见使用方法总结(神经网络DNN、CNN、RNN算法)之详细攻略(个人使用)
DL框架之MXNet :神经网络算法简介之MXNet 常见使用方法总结(神经网络DNN.CNN.RNN算法)之详细攻略(个人使用) 相关文章 DL框架之MXNet :深度学习框架之MXNet 的简介. ...
-
Py之fvcore:fvcore库的简介、安装、使用方法之详细攻略
Py之fvcore:fvcore库的简介.安装.使用方法之详细攻略 fvcore库的简介 fvcore是一个轻量级的核心库,它提供了在各种计算机视觉框架(如Detectron2)中共享的最常见和最基本 ...
-
Dataset之CIFAR-10:CIFAR-10数据集简介、下载、使用方法之详细攻略
Dataset之CIFAR-10:CIFAR-10数据集简介.下载.使用方法之详细攻略CIFAR-10简介官网链接:The CIFAR-10 dataset CIFAR-10是一个更接近普适物体的彩色 ...
-
【AI初识境】如何增加深度学习模型的泛化能力
这是专栏<AI初识境>的第9篇文章.所谓初识,就是对相关技术有基本了解,掌握了基本的使用方法. 今天来说说深度学习中的generalization问题,也就是泛化和正则化有关的内容. 作者 ...
-
DL之DNN优化技术:利用Batch Normalization(简介、入门、使用)优化方法提高DNN模型的性能
DL之DNN优化技术:利用Batch Normalization优化方法提高DNN模型的性能 Batch Normalization简介 1.Batch Norm的反向传播的推导有些复杂,但是可借助于 ...
