认真的聊一聊决策树和随机森林
相关推荐
-
决策树(decision tree)(一)——构造决策树方法
说明:这篇博客是看周志华老师的<机器学习>(西瓜书)的笔记总结,虽然自己写了很多总结性文字包括一些算法细节,但博客中仍有部分文字摘自周老师的<机器学习>书,仅供学习交流使用.转 ...
-
ML之RF:随机森林RF算法简介、应用、经典案例之详细攻略
ML之RF:随机森林RF算法简介.应用.经典案例之详细攻略 随机森林RF算法简介 随机森林指的是利用多棵决策树对样本进行训练并预测的一种分类器.它包含多个决策树的分类器,并且其输出的类别是由个别树输出 ...
-
人工智能基础课堂纪要7
4.2 决策树分类原理[*****] 1.信息增益 信息增益 = entroy(前) - entroy(后) 注意:信息增益越大,我们优先选择这个属性进行计算 信息增益优先选择属性总类别比较多的进行划 ...
-
数据挖掘:基于R语言的实战 | 第9章:基于决策树的模型组合
上一章我们学习了决策树模型,这一章我们继续学习几种基于决策树的模型组合,包括袋装决策树.梯度提升决策树.随机森林和贝叶斯可加回归树.本章的最后提供了在R语言中建立以上几种模型的案例. 9.1节 ...
-
R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
原文链接:http://tecdat.cn/?p=22262 在讨论分类时,我们经常分析二维数据(一个自变量,一个因变量).但在实际生活中,有更多的观察值,更多的解释变量.随着两个以上的解释变量,它开 ...
-
手把手教你用Python构建logit、负二项回归、决策树与随机森林机器学习模型
本次更新的主要内容为利用Python中的statsmodels库构建logit与负二项回归模型,以及利用sklearn库构建决策树以及随机森林模型.内容源自同济大学研究生课程<高级数理统计> ...
-
R语言基于树的方法:决策树,随机森林,Bagging,增强树
原文链接:http://tecdat.cn/?p=9859 概观 本文是有关 基于树的 回归和分类方法的. 树方法简单易懂,但对于解释却非常有用,但就预测准确性而言,它们通常无法与最佳监督学习方法 ...
-
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
原文链接:http://tecdat.cn/?p=23061 数据集信息: 这个数据集可以追溯到1988年,由四个数据库组成.克利夫兰.匈牙利.瑞士和长滩."目标 "字段是指病人是 ...
-
什么是模型复杂度?比较线性回归与决策树与随机森林
使用模拟数据集测试简单和复杂机器学习模型的实用指南. > Photo by Daniel Giannone on Unsplash 机器学习模型是一种学习数据集的输入(独立)特征与目标(独立)特 ...
-
R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测
原文链接:http://tecdat.cn/?p=17950 在本文中,我们使用了逻辑回归.决策树和随机森林模型来对信用数据集进行分类预测并比较了它们的性能.数据集是 credit=read.csv( ...
-
ML之分类预测:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类模型评估案例来理解和认知机器学习分类预测的模板流程
ML之分类预测:以六类机器学习算法(kNN.逻辑回归.SVM.决策树.随机森林.提升树.神经网络)对糖尿病数据集(8→1)实现二分类模型评估案例来理解和认知机器学习分类预测的模板流程 相关文章 ML之 ...
-
ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)
ML之回归预测:利用十类机器学习算法(线性回归.kNN.SVM.决策树.随机森林.极端随机树.SGD.提升树.LightGBM.XGBoost)对波士顿数据集[13+1,506]回归预测(模型评估.推 ...
-
随机森林:基于决策树的集成学习算法
集成学习并不是一个具体的模型或者算法,而是一个解决问题的框架,其基本思想是综合参考多个模型的结果,以提高性能,类似三个臭皮匠,顶个诸葛亮,图示如下 要运用集成学习,就需要一个拆分和结合的过程,首先是拆 ...
