TF之DNN:对DNN神经网络进行Tensorboard可视化(得到events.out.tfevents本地服务器输出到网页可视化)
相关推荐
-
猫狗大战分类TensorFlow实战分享
点击上方"机器学习爱好者社区" 选择"星标"公众号,重磅干货,第一时间送达 Cats vs. Dogs(猫狗大战)是Kaggle大数据竞赛某一年的一道赛题,利用 ...
-
DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介、应用、经典案例之详细攻略
DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介.应用.经典案例之详细攻略 相关文章 DL:深度学习(神经网络)的简介.基础知识(神经元/感知机.训练策略.预测原理).算法分类 ...
-
DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界
DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界 输出结果 设计代码 首先查看数据集 import numpy as np from sklearn.data ...
-
TF之NN:利用神经网络系统自动学习散点(二次函数+noise+优化修正)输出结果可视化(matplotlib动态演示)
TF之NN:利用神经网络系统自动学习散点(二次函数+noise+优化修正)输出结果可视化(matplotlib动态演示) 输出结果 代码设计 import tensorflow as tf impor ...
-
TF之DNN:TF利用简单7个神经元的三层全连接神经网络【2-3-2】实现降低损失到0.000以下
TF之DNN:TF利用简单7个神经元的三层全连接神经网络实现降低损失到0.000以下(输入.隐藏.输出层分别为 2.3 . 2 个神经元) 输出结果 实现代码 # -*- coding: utf-8 ...
-
深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
-
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介.代码实现.代码调参之详细攻略 GD算法的简介 GD算法,是求解非线性无约束优化问题的基本方法,最小化损失函数的一种常用的一阶优化方法.如 ...
-
TF之DNN:利用DNN【784→500→10】对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程
TF之DNN:利用DNN[784→500→10]对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程 输出结果 案例理解DNN过程思路 1.一张图像数组形状的变化: ...
-
DL之DNN优化技术:神经网络算法简介之数据训练优化【mini-batch技术+etc】
DL之DNN优化技术:神经网络算法简介之数据训练优化[mini-batch技术+etc] 1.mini-batch技术 输出结果 实现代码 # coding: utf-8 #DL之mini-batch ...
-
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码 基于自定义数据集利用深度神经网络(输入层(10个uni ...
