初中函数考点(六):二次函数的图像与性质与实际应用
|
考纲要求 |
命题趋势 |
|
1.理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质. 3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题. 4.熟练掌握二次函数的上下左右平移 5.熟练掌握二次函数解析式的求法. |
二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查 |
考点一:二次函数的图象及性质

【方法总结】


【答案解析】

【典型例题3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象( )
A.向左平移1个单位,再向上平移3个单位
B.向右平移1个单位,再向上平移3个单位
C.向左平移1个单位,再向下平移3个单位
D.向右平移1个单位,再向下平移3个单位

【典型例题4】

(1)求A,B,C三点的坐标;
(2)求经过A,B,C三点的抛物线的解析式.
【答案解析】


二次函数的实际应用
二次函数的实际应用考察销售利润方案问题是最常见的,并且根据二次函数的性质,在一定的范围内,求出符合要求的最大值得出最大利润,那么我们就要对销售利润问题的知识掌握熟练,以下知识点能很好的帮助我们解决这类题目。
总利润=单个的利润 × 总数量
单个的利润= 售价—进价
利润率=利润 ÷成本
遇到二次函数的应用题我们需要考虑以下问题:
1.看清题目,理清楚条件,弄懂题目的意思,知道要求什么,便于我们找准合适的自变量X与相应的函数Y,这是开头也是非常重要的。
2.条件整理清楚后,抓住数量关系列出函数关系式,如果要研究面积那就根据求解面积来列式,如果要求利润那就列关于利润的表达式。
3.列完函数表达式之后要求最值,那么这里要首先写清楚自变量的取值范围,这一点很容易被忽略掉,自变量的取值决定着函数的最值在哪里可以取。


【方法总结】运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:
1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.
2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值.
(1)求y关于x的函数关系式(直接写出结果);
(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式,当销售单价x为何值时,月获利最大?并求这个最大值(月获利=月销售额-月销售产品总进价-月总开支);

(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元.
【答案解析】


