DL之HNN:基于HNN(subplot)将凌乱数字矩阵图像(模拟手写数字图片)实现转为最相近的阿拉伯数字
相关推荐
-
什么是单应性矩阵?
重磅干货,第一时间送达 你们是否知道人工智能正在改变体育产业?AI助教在比赛前和比赛中能帮助教练增强战略决策,通过使用高速相机和可穿戴传感器,人工智能现在可以测量场上每个球员的运动和位置.但是,AI如 ...
-
使用 OpenCV 将卷积实现为图像过滤器
卷积简介 卷积是计算机视觉 (CV) 中的一个流行术语.在讨论如何实现 CV 任务时,经常会提到卷积神经网络.因此,任何 CV 追求者都必须完全理解"卷积"一词. 卷积是几个图像处 ...
-
生命科学中的 UMAP(降维算法)
UMAP应该说是目前最好的降维算法了,能最大程度的保留原始数据的特征同时大幅度的降低特征维数. 这是<生命科学的数理统计和机器学习>的相关探讨,我试图介绍生物信息学.生物医学.遗传学等常见 ...
-
时间序列的平稳性检验方法汇总
TimeSeries 当当当,分享时间序列相关知识 4篇原创内容 Official Account 上文我们已经知道了什么是时间序列的平稳性,也见到了一些平稳时间序列和非平稳的时间序列,那么当我们有一 ...
-
Matplotlib等高线图
等高线图(也称"水平图")是一种在二维平面上显示 3D 图像的方法.等高线有时也被称为 "Z 切片",如果您想要查看因变量 Z 与自变量 X.Y 之间的函数图像 ...
-
模拟和数字信号的桥梁——奈奎斯特采样定理
在我们周围有着各种各样的模拟信号,比如,电流,电磁波,温度,声音等等.作为计算机系统来说,它只认识0和1,意味着它只能处理数字信息,但是,它是如何处理我们周围的这些模拟信号的呢?要理解这个问题,我们需 ...
-
基于Opencv的图像单应性转换实战
重磅干货,第一时间送达 同形转换 我们所常见的都是以这样的方式来处理图像:检测斑点,分割感兴趣的对象等.我们如何将它们从一种形式转换为另一种形式来处理这些图像呢?通过单应矩阵快速转换图像可以实现这个需 ...
-
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率 输出结果 核心代码 #DL之NN:基于sklearn自带手写数字图片识别数据集 ...
-
DL之RBM:基于RBM实现手写数字图片识别提高准确率
DL之RBM:基于RBM实现手写数字图片识别提高准确率 输出结果 设计代码 import numpy as np import matplotlib.pyplot as plt from sklear ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 1.10.0 Size of: - Trai ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 下边两张图对应查看,可知,数字0有965个是 ...
-
DL之Attention:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+SpatialTransformer)实现多分类预测
DL之Attention:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init.ST_CNN算法(CNN+SpatialTransformer)实现多分类预测 相关文章 DL之A ...
-
DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness、SVM、NN各自的准确率
DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness.SVM.NN各自的准确率 数据集下载以及 ...
-
DL之NN:NN算法(本地数据集50000张训练集图片)进阶优化之三种参数改进,进一步提高手写数字图片识别的准确率
DL之NN:NN算法(本地数据集50000张训练集图片)进阶优化之三种参数改进,进一步提高手写数字图片识别的准确率 导读 上一篇文章,比较了三种算法实现对手写数字识别,其中,SVM和神经网络算法表现非 ...
-
DL之NN/CNN:NN算法进阶优化(本地数据集50000张训练集图片),六种不同优化算法实现手写数字图片识别逐步提高99.6%准确率
DL之NN/CNN:NN算法进阶优化(本地数据集50000张训练集图片),六种不同优化算法实现手写数字图片识别逐步提高99.6%准确率 设计思路 设计代码 import mnist_loader fr ...
-
TF之LiR:基于tensorflow实现手写数字图片识别准确率
TF之LiR:基于tensorflow实现手写数字图片识别准确率 输出结果 Extracting MNIST_data\train-images-idx3-ubyte.gz Please use tf ...
