Seurat4.0系列教程3:合并数据集
相关推荐
-
单细胞工具箱|Seurat官网标准流程
学习单细胞转录组肯定先来一遍Seurat官网的标准流程. 数据来源于Peripheral Blood Mononuclear Cells (PBMC),共2700个单细胞, Illumina Next ...
-
不缺好文章、idea的不要进!
Single cell RNA-seq analysis workshop 1 Quality Control 大家好,我是晨曦,本次将开启一个全新的系列,依旧是单细胞,依旧是熟悉的晨曦解读,只不过这 ...
-
首次揭秘!不做实验也能发10 SCI,CNS级别空间转录组套路全解析(附超详细代码!)
江山代有套路出 大家好,我是晨曦,上次的推文给大家介绍了单细胞图谱类文章,相信大家不管是看过那篇推文,还是看了我们挑圈联靠其它单细胞的相关推文,对于单细胞,不管是从流程还是从分析方式上都应该不陌生了吧 ...
-
Seurat学习与使用(一)
简介Seurat是一个r包,被设计用于单细胞rna-seq数据的细胞质控和分析.Seurat旨在使用户能够识别和解释单细胞转录组数据中的异质性来源,同时提供整合不同类型的单细胞数据的函数.目前Seur ...
-
「单细胞转录组系列」使用scCATCH进行聚类结果自动化注释
摘自:xuzhougeng https://www.jianshu.com/p/cf7a7341b0b6 目前该软件只支持Mouse和Human,不支持其他物种,因此不是这两个物种的小伙伴可以不用看了 ...
-
Seurat4.0系列教程:大数据集整合的方法
对于非常大的数据集,标准工作流程可能计算成本高得令人望而却步.在此工作流程中,我们可采用如下两种方法提高效率和运行时间: Reciprocal PCA(RPCA) 基于参考的整合 主要的效率改进是使用 ...
-
Seurat4.0系列教程1:标准流程
时代的洪流奔涌而至,单细胞技术也从旧时王谢堂前燕,飞入寻常百姓家.雪崩的时候,没有一片雪花是无辜的,你我也从素不相识,到被一起卷入单细胞天地.R语言和Seurat已以势如破竹之势进入4.0时代,天问一 ...
-
Seurat4.0系列教程4:整合分析
scRNA-seq整合简介 对两个或两个以上单细胞数据集的整合分析提出了独特的挑战.特别是,在标准工作流下,识别存在于多个数据集中的基因可能存在问题.Seurat v4 包括一组方法,以匹配(或&qu ...
-
Seurat4.0系列教程5:交互技巧
此文演示了一些与 Seurat 对象交互的功能.为了演示,我们将使用在第一个教程中创建的 2,700 个 PBMC 对象.为了模拟我们有两个复制的情景,我们将随机分配每个集群中一半的细胞自" ...
-
Seurat4.0系列教程6:常用命令
Seurat 标准流程 标准 Seurat 工作流采用原始的单细胞表达数据,旨在数据中查找clusters.此过程包括数据标准化和高变基因选择.数据归一化.高变基因的PCA.共享近邻图形的构建以及使用 ...
-
Seurat4.0系列教程7:数据可视化方法
我们将使用之前从 2,700个 PBMC 教程中计算的 Seurat 对象在 演示可视化技术.您可以从这里[1]下载此数据集 SeuratData::InstallData("pbmc3k& ...
-
Seurat4.0系列教程8:细胞周期评分和回归分析
此教程展示了如何通过基于传统细胞周期相关marker计算细胞周期得分,并在预处理过程中将这些分数从数据中回归,以消除 scRNA-seq 数据中细胞周期异质性的影响.我们在小鼠造血祖细胞数据集上证明了 ...
-
Seurat4.0系列教程9:差异表达检测
我们使用通过SeuratData[1]包提供的 2,700个 PBMC 来演示. 加载数据 library(Seurat) library(SeuratData) pbmc <- LoadDat ...
-
Seurat4.0系列教程10:降维
加载数据 此教程演示了如何存储和与Seurat 中的降维信息进行交互.为了演示,我们将使用SeuratData[1]包提供的 2,700 个 PBMC 对象. library(Seurat) libr ...
