ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练实现二分类预测(基于训练好的模型进行新数据预测)
相关推荐
-
回顾性临床研究太单一?加上“机器学习”秒变身!
本篇文章是一项临床大样本的回顾性研究,这篇文章是2021年发表在Frontiers in medicine(IF=5.091)上的文章<Application of Machine Learni ...
-
遇事不决,XGBoost,梯度提升比深度学习更容易赢得Kaggle竞赛
在Kaggle上参加机器学习比赛,用什么算法最容易拿奖金? 你可能会说:当然是深度学习. 还真不是,据统计获胜最多的是像XGBoost这种梯度提升算法. 这就奇了怪了,深度学习在图像.语言等领域大放异 ...
-
ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练(模型保存+可视化)实现二分类预测
ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练(模型保存+可视化)实现二分类预测 数据集简介 Dataset之HiggsBoson: ...
-
ML之xgboost&GBM:基于xgboost&GBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测
ML之xgboost&GBM:基于xgboost&GBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测 输出结果 finish loading ...
-
ML之LoR&Bagging&RF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测(最全)
ML之LoR&Bagging&RF:依次利用LoR.Bagging.RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测 输出结果 1.数据集可视化以及统计分析 ...
-
ML之LoR&Bagging&RF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合
ML之LoR&Bagging&RF:依次利用Bagging.RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测--模型融合 输出结果 设计思路 核心代码 RF算 ...
-
ML之LoR:利用信用卡数据集(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类
ML之LoR:利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}.过采样{SMOTE/ADASYN})同时采用LoR算法(PR ...
-
ML之RF&XGBoost:分别基于RF随机森林、XGBoost算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)
ML之RF&XGBoost:分别基于RF随机森林.XGBoost算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还) 输出结果 设计思路 核心代码 rfc = RandomF ...
-
ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)
ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还) 输出结果 比赛结果 设计思路 核心代码 rfc ...
-
ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分
ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集[特征列分段→独热编码]进行回归预测(房价预测)+预测新数据得分 导读 对Boston(波士顿房价)数据集进行特征工程,分 ...
-
ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 输出结果 1.xgboost(num_trees ...
