DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率
相关推荐
-
Batch Normalization 的实战使用
Batch Normalization 的实战使用
-
HALCON 20.11:深度学习笔记(7)
HALCON 20.11.0.0中,实现了深度学习方法.下面,我们将描述深度学习环境中使用的最重要的术语: anchor (锚) Anchors are fixed bounding boxes. T ...
-
神经网络调参Tricks大全(1090页NN调参技巧资料)
本文作为总结机器学习.深度学习领域实践过程中各种"大道至简"的炼丹笔记小技巧,并在文末附<全球机器学习技术大会>各厂分享嘉宾的1090页干货PDF. Cyclic LR ...
-
猫狗大战分类TensorFlow实战分享
点击上方"机器学习爱好者社区" 选择"星标"公众号,重磅干货,第一时间送达 Cats vs. Dogs(猫狗大战)是Kaggle大数据竞赛某一年的一道赛题,利用 ...
-
mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型
Mxnet框架深度学习框架越来越受到大家的欢迎.但是如何正确的使用这一框架,很多人并不是很清楚.从训练数据的预处理,数据的生成(网络真正需要的数据格式,网络模型的保存,网络训练日志的保存,等等,虽然网 ...
-
【时空序列预测实战】详解时空序列常用数据集之MovingMnist数据集(demo代码)
前言 开始准备着手写实战的系列了, 接下来每次代码可能比较多,希望大家可以hold住 毋庸置疑在做时空序列模型的时候,oving数据集,或者说标准的数据集是必要的 这篇文章我们主要介绍MovingMn ...
-
DL之NN:NN算法(本地数据集50000张训练集图片)进阶优化之三种参数改进,进一步提高手写数字图片识别的准确率
DL之NN:NN算法(本地数据集50000张训练集图片)进阶优化之三种参数改进,进一步提高手写数字图片识别的准确率 导读 上一篇文章,比较了三种算法实现对手写数字识别,其中,SVM和神经网络算法表现非 ...
-
DL之RBM:基于RBM实现手写数字图片识别提高准确率
DL之RBM:基于RBM实现手写数字图片识别提高准确率 输出结果 设计代码 import numpy as np import matplotlib.pyplot as plt from sklear ...
-
TF之LoR:基于tensorflow利用逻辑回归算LoR法实现手写数字图片识别提高准确率
TF之LoR:基于tensorflow利用逻辑回归算LoR法实现手写数字图片识别提高准确率 输出结果 设计代码 #TF之LoR:基于tensorflow实现手写数字图片识别准确率 import ten ...
-
DL之NN/CNN:NN算法进阶优化(本地数据集50000张训练集图片),六种不同优化算法实现手写数字图片识别逐步提高99.6%准确率
DL之NN/CNN:NN算法进阶优化(本地数据集50000张训练集图片),六种不同优化算法实现手写数字图片识别逐步提高99.6%准确率 设计思路 设计代码 import mnist_loader fr ...
-
DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness、SVM、NN各自的准确率
DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness.SVM.NN各自的准确率 数据集下载以及 ...
-
DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练、预测(95%)
DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练.预测(95%) 数据集展示 先查看sklearn自带digits手写数据集(1797*64) ...
-
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率 输出结果 核心代码 #DL之NN:基于sklearn自带手写数字图片识别数据集 ...
-
DL之DNN:利用DNN【784→50→100→10】算法对MNIST手写数字图片识别数据集进行预测、模型优化
DL之DNN:利用DNN[784→50→100→10]算法对MNIST手写数字图片识别数据集进行预测.模型优化 导读 目的是建立三层神经网络,进一步理解DNN内部的运作机制 输出结果 设计思路 核心代 ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 1.10.0 Size of: - Trai ...
