DL之DNN优化技术:自定义MultiLayerNet【5*100+ReLU】对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化、He参数初始化)性能差异
相关推荐
-
对齐PyTorch,一文详解OneFlow的DataLoader实现
在最新的OneFlow v0.5.0版本中,我们增加了许多新特性,比如: 新增动态图特性:OneFlow 默认以动态图模式(eager)运行,与静态图模式(graph)相比,更容易搭建网络.调试和验证 ...
-
C++之用std::nothrow分配内存失败不抛异常
C++之用std::nothrow分配内存失败不抛异常
-
轻量高效!清华智能计算实验室开源基于PyTorch的视频 (图片) 去模糊框架SimDeblur
作者丨科技猛兽 编辑丨极市平台 极市导读 清华大学自动化系智能计算实验室团队开源基于 PyTorch 的视频 (图片) 去模糊框架 SimDeblur,涵盖经典的视频 (图像) 去模糊算法且轻量高效. ...
-
深度学习基础01-2-利用感知器实现and功能
参考文档 1.预先知识学习 1.and函数 2.Python zip函数 >>>a = [1,2,3]>>> b = [4,5,6]>>> c = ...
-
PyTorch 学习笔记(四):权值初始化的十种方法
加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动! 同时提供每月大咖直播分享.真实项目需求对接.干货资讯汇总 ...
-
C++编译出现binding ‘const string {aka const std::__cxx11::basic_string<char>}’ to reference of type ‘std
编译异常如下: 解决办法: 我的函数是这样的 string &larger(const string &s1, const string &s2){ return s1.siz ...
-
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程 相关文章: DL之DNN优化技术:采用三种激活函数(si ...
-
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介.代码实现.代码调参之详细攻略 GD算法的简介 GD算法,是求解非线性无约束优化问题的基本方法,最小化损失函数的一种常用的一阶优化方法.如 ...
-
DL之DNN优化技术:利用Batch Normalization(简介、入门、使用)优化方法提高DNN模型的性能
DL之DNN优化技术:利用Batch Normalization优化方法提高DNN模型的性能 Batch Normalization简介 1.Batch Norm的反向传播的推导有些复杂,但是可借助于 ...
-
DL之DNN优化技术:神经网络算法简介之数据训练优化【mini-batch技术+etc】
DL之DNN优化技术:神经网络算法简介之数据训练优化[mini-batch技术+etc] 1.mini-batch技术 输出结果 实现代码 # coding: utf-8 #DL之mini-batch ...
-
DL之DNN优化技术:利用Dropout(简介、使用、应用)优化方法提高DNN模型的性能
DL之DNN优化技术:利用Dropout(简介.入门.使用)优化方法提高DNN模型的性能 Dropout简介 随机失活(dropout)是对具有深度结构的人工神经网络进行优化的方法,在学习过程中通过将 ...
-
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能 输出结果 ====== ...
-
DL之DNN优化技术:DNN优化器的参数优化—更新参数的四种最优化方法(SGD/Momentum/AdaGrad/Adam)的案例理解、图表可视化比较
DL之DNN优化技术:DNN优化器的参数优化-更新参数的四种最优化方法(SGD/Momentum/AdaGrad/Adam)的案例理解.图表可视化比较 四种最优化方法简介 DL之DNN优化技术:神经网 ...
-
DL之DNN:自定义MultiLayerNet【6*100+ReLU,SGD】对MNIST数据集训练进而比较【多个超参数组合最优化】性能
DL之DNN:自定义MultiLayerNet[6*100+ReLU,SGD]对MNIST数据集训练进而比较[多个超参数组合最优化]性能 输出结果 val_acc:0.14 | lr:4.370890 ...
-
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码 基于自定义数据集利用深度神经网络(输入层(10个uni ...
